Measurement of the Total Active ⁸B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity[1]

K.T. Lesko¹, Y.D. Chan¹, K.M. Heeger², A.D. Marino¹, E.B. Norman¹, A.W.P. Poon¹, and R.G. Stokstad¹ for the SNO Collaboration

²Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

FIG. 1: Global neutrino oscillation contours. (a) Solar global: D₂O day and night spectra, salt CC, NC, ES fluxes, SK, Cl, Ga. The best-fit point is $\Delta m^2 = 6.5 \times 10^{-5}$, $\tan^2\theta = 0.40$, $f_B = 1.04$, with $\chi^2/\text{d.o.f.}=70.2/81$. (b) Solar global + KamLAND. The best-fit point is $\Delta m^2 = 7.1 \times 10^{-5}$, $\tan^2\theta = 0.41$, $f_B = 1.02$. In both (a) and (b) the ⁸B flux is free and the *hep* flux is fixed.

The Sudbury Neutrino Observatory (SNO) has precisely determined the total active $(v_x)^8 B$ solar neutrino flux without assumptions about the energy dependence of the v_e survival probability. The measurements were made with dissolved NaCl in the heavy water to enhance the sensitivity and signature for neutral-current interactions. The flux is found to be 5.21 ± 0.27 (stat) ± 0.38 (syst) $\times 10^6$ cm⁻²s⁻¹, in agreement with previous measurements and standard solar models. A global analysis of these and other solar and reactor neutrino results yields $\Delta m^2 = 7.1^{+1.2}_{-0.6} \times 10^{-5}$ eV² and $\theta = 32.5^{+2.4}_{-2.3}$ degrees. Maximal mixing is rejected at the equivalent of 5.4 standard deviations.

[1] The SNO Collaboration, Phys. Rev. Lett. 92, 181301 (2004).

¹Institute for Particle and Nuclear Astrophysics, Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720